PXD068698 is an
original dataset announced via ProteomeXchange.
Dataset Summary
| Title | A twin xanthan lyase-dependent xanthan degradation system in Paenibacillus taichungensis I5 |
| Description | Xanthan gum, a natural heteropolysaccharide produced by Xanthomonas species, has many biotechnological applications across industries due to its unique rheological properties. Expanding its utility requires specific enzymes capable of targeted xanthan modification or degradation. In this study, a novel bacterial strain, isolated from a spoiled xanthan sample and identified as Paenibacillus taichungensis I5, was shown to degrade xanthan using a plate screening assay with Congo red. Enzyme activity tests of the culture supernatant demonstrated the secretion of xanthan-degrading enzymes. Genome and proteome analyses suggests a chromosomal xanthan utilization locus encoding a suite of enzymes, including a xanthanase (Pt_XanGH9), two xanthan lyases (Pt_XanPL8a and Pt_XanPL8b), two unsaturated glucuronidases, two α-mannosidases, as well as transport and regulator proteins. Functional characterization through recombinant protein expression and enzyme assays confirmed the functions of Pt_XanGH9, Pt_XanPL8a and Pt_XanPL8b on native xanthan and xanthan-derived oligosaccharides. The polysaccharide degradation products released by these enzymes were identified via LC-MS analysis. The two xanthan lyases differed in cleavage specificity. In contrast to Pt_XanPL8a, Pt_XanPL8b is synthesized with an N-terminal signal peptide, yet both lyases were detected in cell-free supernatant during growth on xanthan. Based on the composition of the xanthan utilization gene cluster and preliminary enzyme characteristics, a working model for xanthan utilization by P. taichungensis I5 is proposed. Reaching a better understanding of bacterial xanthan derivatives and xanthan degrading pathways and the enzymes involved may help to develop modified xanthan derivatives and xanthan degrading enzymes that align with the specific demands of various industrial process. |
| HostingRepository | PRIDE |
| AnnounceDate | 2026-02-02 |
| AnnouncementXML | Submission_2026-02-01_16:18:05.130.xml |
| DigitalObjectIdentifier | |
| ReviewLevel | Peer-reviewed dataset |
| DatasetOrigin | Original dataset |
| RepositorySupport | Unsupported dataset by repository |
| PrimarySubmitter | Christina Ludwig |
| SpeciesList | scientific name: Paenibacillus taichungensis; NCBI TaxID: NEWT:484184; |
| ModificationList | iodoacetamide derivatized residue |
| Instrument | Q Exactive HF-X |
Dataset History
| Revision | Datetime | Status | ChangeLog Entry |
| 0 | 2025-09-22 13:03:43 | ID requested | |
| ⏵ 1 | 2026-02-01 16:18:06 | announced | |
Publication List
| 10.1007/s00253-025-13684-y; |
| Han R, Baudrexl M, Frank O, Ludwig C, Berezina OV, Rykov SV, Liebl W, A twin xanthan lyase-dependent xanthan degradation system in Paenibacillus taichungensis I5. Appl Microbiol Biotechnol, 110(1):31(2026) [pubmed] |
Keyword List
| submitter keyword: xanthanase, gene cluster,Paenibacillus taichungensis, xanthan gum, xanthan lyase |
Contact List
| Christina Ludwig |
| contact affiliation | Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS) Technical University of Munich (TUM) Gregor-Mendel-Strasse 4 85354 Freising |
| contact email | tina.ludwig@tum.de |
| lab head | |
| Christina Ludwig |
| contact affiliation | TU Munich |
| contact email | tina.ludwig@tum.de |
| dataset submitter | |
Full Dataset Link List
Dataset FTP location
NOTE: Most web browsers have now discontinued native support for FTP access within the browser window. But you can usually install another FTP app (we recommend FileZilla) and configure your browser to launch the external application when you click on this FTP link. Or otherwise, launch an app that supports FTP (like FileZilla) and use this address: ftp://ftp.pride.ebi.ac.uk/pride/data/archive/2026/02/PXD068698 |
| PRIDE project URI |
Repository Record List
[ + ]
[ - ]
- PRIDE
- PXD068698
- Label: PRIDE project
- Name: A twin xanthan lyase-dependent xanthan degradation system in Paenibacillus taichungensis I5