⮝ Full datasets listing

PXD025941-1

PXD025941 is an original dataset announced via ProteomeXchange.

Dataset Summary
TitleDeep Semi-Supervised Learning Improves Universal Peptide Identification of Shotgun Proteomics Data
DescriptionData and results for paper, "Deep Semi-Supervised Learning Improves Universal Peptide Identification of Shotgun Proteomics Data," found at: https://doi.org/10.1101/2020.11.12.380881 Deep learning software for PSM recalibration, called ProteoTorch-DNN, available at: https://github.com/proteoTorch/proteoTorch with documentation: https://proteotorch.readthedocs.io/en/latest/
HostingRepositoryMassIVE
AnnounceDate2021-05-11
AnnouncementXMLSubmission_2021-05-11_12:58:48.376.xml
DigitalObjectIdentifier
ReviewLevelNon peer-reviewed dataset
DatasetOriginOriginal dataset
RepositorySupportSupported dataset by repository
PrimarySubmitterJohn Halloran
SpeciesList scientific name: Homo sapiens; common name: human; NCBI TaxID: 9606; scientific name: SARS coronavirus; NCBI TaxID: 227859; scientific name: Plasmodium; NCBI TaxID: 5820;
ModificationListCarbamidomethyl
InstrumentOrbitrap Fusion; Orbitrap Fusion ETD; LTQ Orbitrap Elite; LTQ Orbitrap Velos
Dataset History
RevisionDatetimeStatusChangeLog Entry
02021-05-11 09:39:47ID requested
12021-05-11 12:58:48announced
Publication List
no publication
Keyword List
submitter keyword: Deep Learning, Prosit, PSM Recalibration, Percolator, Deep Neural Networks, Machine Learning
Contact List
John Timothy Halloran
contact affiliationUniversity of California, Davis
contact emailjthalloran@ucdavis.edu
lab head
John Halloran
contact affiliationUniversity of California, Davis
contact emailjthalloran@ucdavis.edu
dataset submitter
Full Dataset Link List
MassIVE dataset URI
Dataset FTP location
NOTE: Most web browsers have now discontinued native support for FTP access within the browser window. But you can usually install another FTP app (we recommend FileZilla) and configure your browser to launch the external application when you click on this FTP link. Or otherwise, launch an app that supports FTP (like FileZilla) and use this address: ftp://massive.ucsd.edu/MSV000087402/