The arsenic-responsive repressor, ArsR, has long been understood as a canonical regulator of the arsRBC operon, which confers resistance to arsenic stress. However, recent studies suggest a broader regulatory scope for ArsR. Here, we investigated the proteomic landscape of Escherichia coli strains with and without ArsR to elucidate ArsR as an activator in both non-stressing and arsenic-stressing conditions. Using mass spectrometry-based shotgun proteomics and statistical analyses, we characterized the differential abundance of proteins across AW3110 (ΔarsRBC), AW3110 complemented with arsR, and wild-type K-12 strains under control and arsenite-stressed conditions. Our study shows ArsR influences proteomic networks beyond the ars operon, integrating metabolic and redox responses crucial for cellular adaptation and survival. This suggests that ArsR has a significant role in gut microbiome metabolomic profiles in response to arsenite. Proteins involved in alanine, lactaldehyde, arginine, thioredoxin, and proline pathways were significantly elevated in strains where ArsR was detected, both with and without arsenite. We identified proteins exhibiting an “ArsR-dependent” activation pattern, highlighting ArsR’s potential role in redox balance and energy metabolism. These findings challenge the classical view of ArsR as a re-pressor and position it as a pleiotropic regulator including broad activation.