African swine fever virus (ASFV) causes a highly fatal disease in domestic pigs, resulting in substantial economic losses to the global swine industry. Vaccine development continues to be hindered by limited characterization of viral proteins and their functional redundancies. In this study, we employ combined experimental and computational approaches to characterize the ASFV pI73R protein, which contains a Z-DNA binding domain and plays a critical role in ASFV virulence and pathogenesis. We demonstrate that pI73R shares significant structural similarity with transcription factors of the forkhead box (FOX) protein family. Overexpression of pI73R results in downregulation of CRNKL1, a core spliceosome component, suggesting a potential mechanism by which pI73R modulates host protein synthesis. Using high-resolution mass spectrometry, we map the pI73R interactome and identify the host protein GNB1 as a novel direct interactor of pI73R which may facilitate its nuclear transport. Furthermore, we show that pI73R exhibits consistent oligomerization and expression across different ASFV genotypes, highlighting its functional importance. Taken together, these results provide new insights into pI73R function, ASFV-host dynamics, and offer promising directions for antiviral strategy development.