Cell cycle events are ordered by cyclin-dependent kinases (CDKs), which phosphorylate hundreds of substrates. Multiple phosphatases oppose these CDK substrates, yet their collective role in regulating phosphorylation timing in vivo remains unclear. Here, we show that four phosphatases (PP2A-B55, PP2A-B56, CDC14, and PP1) each target distinct subsets of CDK substrate sites in vivo in fission yeast, influencing when phosphorylation occurs during G2 and mitosis. On average, sites dephosphorylated by CDC14 and PP2A-B56 are phosphorylated earlier during G2, followed by sites dephosphorylated by PP1 and PP2A-B55. This suggests that these phosphatases set different phosphorylation thresholds at the G2/M transition. Consistent with this, depleting PP2A-B55 or CDC14 accelerates mitotic onset, likely by advancing phosphorylation of their respective CDK substrates, suggesting these phosphorylation thresholds are important for regulating mitotic onset. Our findings establish in vivo phosphatase substrate specificity as a key factor regulating the timing of CDK substrate phosphorylation throughout the cell cycle.