Metastatic cancer cells, originating from cancer stem cells with metastatic capacity, utilize nutrient flexibility to overcome the hurdles of metastatic cascade. However, the nutrient supply for maintaining the stemness potentials of metastatic cancer cells remains unknown. Here, we revealed that metastatic breast cancer cells maintain stemness and initiate metastasis upon detachment via uptaking and oxidating lactate. In detached metastasizing breast cancer cells, lactate was incorporated into tricarboxylic acid cycle and boosted oxidative phosphorylation, and then promoted the stemness potentials via α-KG-DNMT3B-mediated SOX2 hypomethylation. Moreover, lactate was uptake and oxidated in mitochondria by CD147/MCT1/LDHB complex, whose existence correlates to the stemness potentials and tumor metastasis in breast cancer patients. An intracellularly expressed single chain variable fragment targeting mitochondrial CD147 (mito-CD147 scFv) effectively disrupted mitochondrial CD147/MCT1/LDHB complex, inhibited lactate-induced stemness potentials, depleted circulating breast cancer cells and reduced metastatic burden, suggesting a promising clinical application in reducing lactate-fueled metastasis.