Mitochondrial disease encompasses inherited disorders affecting mitochondrial function. A severe and untreatable form of mitochondrial disease is Leigh syndrome (LS) causing psychomotor regression and metabolic crises. To accelerate drug discovery for LS, we screen a library of 5,632 repurposable compounds in neural cells from LS patient-derived induced pluripotent stem cells (iPSCs). We identify phosphodiesterase 5 (PDE5) inhibitors as leads and prioritize sildenafil for its clinical safety. Sildenafil corrects mitochondrial membrane potential defects, restores neurodevelopmental pathways, and normalizes calcium responses in LS brain organoids. In small and large mammalian models of LS, sildenafil extends the lifespan and ameliorates disease phenotypes. Off-label individual basis treatment with sildenafil in six LS patients improves their motor function and resistance to metabolic crises. Collectively, the findings highlight the potential of iPSC-driven drug discovery and position sildenafil as a promising drug candidate for mitochondrial disease.