Background: Muscle proteins of the obscurin protein family play important roles in sarcomere organization, sarcoplasmic reticulum (SR) and T-tubule architecture and function. However, their precise molecular functions and redundancies between protein family members as well as their involvement in cardiac diseases remain to be fully understood. Methods: To investigate the functional roles of obscurin and its close homologue obscurin-like 1 (Obsl1) in the heart, we generated and analyzed knockout mice for obscurin, Obsl1, as well as obscurin/Obsl1 double-knockouts (dKO). Results: We show that dKO mice are viable but show postnatal deficits in cardiac muscle SR and mitochondrial architecture and function at the microscopic, biochemical, and cellular level. Altered SR structure resulted in perturbed calcium cycling, while mitochondrial ultrastructure deficits were linked to decreased levels of Chchd3, a Micos complex protein. Hearts of dKO mice also show altered levels of Atg4 proteins, novel Obsl1 interactors, resulting in abnormal mitophagy, and increased unfolded protein response. At the physiological level, loss of obscurin and Obsl1 resulted in a profound delay of cardiac relaxation, associated with metabolic signs of heart failure.