Flagella are essential for motility and pathogenicity in many bacteria. The main component of the flagellar filament, flagellin, often undergoes post-translational modifications, with glycosylation being a common occurrence. In Pseudomonas aeruginosa PAO1, the b-type flagellin is O-glycosylated with a structure that, in addition to an unknown moiety, is known to include a rhamnose and a phospho-group. This resembles a well-characterized glycan (Type A) in Clostridioides difficile strain 630, which features an N-acetylglucosamine linked to an N-methylthreonine via a phosphodiester bond. This study aimed to characterize the b-type glycan structure in Pseudomonas aeruginosa PAO1 using a set of mass spectrometry experiments. For this purpose, we used wild-type P. aeruginosa PAO1 and several gene mutants from the b-type glycan biosynthetic cluster. Moreover, we compared the mass spectrometry characteristics of the b-type glycan with those of in vitro modified Type A-peptides from C. difficile strain 630. Our results demonstrate that the thus far unknown moiety of the b-type glycan in P. aeruginosa consists of an N,N-dimethylthreonine. These data allowed us to refine our model of the flagellin glycan biosynthetic pathway in both P. aeruginosa PAO1 and C. difficile strain 630.