Mitochondrial dysfunction is associated with inflammatory bowel diseases (IBD). To understand how microbial-metabolic circuits contribute to intestinal tissue injury, we disrupt mitochondrial function in the intestinal epithelium by deleting heat shock protein 60 (Hsp60Δ/ΔIEC). While metabolic perturbation causes self-resolving tissue injury, regeneration is disrupted in the absence of aryl hydrocarbon receptor (Hsp60Δ/ΔIEC;AhR-/-) or IL-10 (Hsp60Δ/ΔIEC;Il10-/-) leading to IBD-like pathology. Tissue pathology is absent in the distal colon of germfree (GF) Hsp60Δ/ΔIEC mice, highlighting bacterial control of metabolic injury. Selective colonization of GF Hsp60Δ/ΔIEC mice with the synthetic community OMM12 confirms expansion of metabolically-flexible Bacteroides ssp., which generates metabolic injury in mono-colonized mice. Transcriptional profiling of metabolically-impaired epithelium identifies gene signatures, such as Ido1, Nos2, and Duox2, differentiating active from inactive tissue inflammation in 343 tissue sections from Crohn’s disease patients. In conclusion, mitochondrial perturbation of the epithelium causes microbiota-dependent tissue injury and discriminative inflammatory gene profiles with relevance for IBD.