14-3-3 proteins have the unique ability to bind and sequester a multitude of diverse phosphorylated signaling proteins and transcription factors. Many previous studies have shown that 14-3-3 interactions with specific phosphorylated substrate proteins can be enhanced through small-molecule natural product or fully synthetic molecular glue interactions. However, enhancing 14-3-3 interactions with both therapeutically intractable transcription factor substrates as well as potential neo-substrates to sequester and inhibit their function has remained elusive. One of the 14-3-3 proteins, 14-3-3or SFN, has a cysteine C38 at the substrate binding interface near sites where previous 14-3-3 molecular glues have been found to bind. In this study, we screened a fully synthetic cysteine-reactive covalent ligand library to identify molecular glues that enhance interaction of 14-3-3with not only druggable transcription factors such as estrogen receptor (ER), but also challenging oncogenic transcription factors such as YAP and TAZ that are part of the Hippo transducer pathway. We identified a hit EN171 that covalently targets both C38 and C96 on 14-3-3 to enhance 14-3-3 interactions with ERYAP, and TAZ leading to impaired estrogen receptor and Hippo pathway transcriptional activity. We further demonstrate that EN171 could not only be used as a molecular glue to enhance native protein interactions, but also could be used as a covalent 14-3-3 recruiter in heterobifunctional molecules to sequester nuclear neo-substrates such as BRD4 and BLC6 into the cytosol. Overall, our study reveals a covalent ligand that acts as a novel 14-3-3 molecular glue for challenging transcription factors such as YAP and TAZ and demonstrates that these glues can be potentially utilized in heterobifunctional molecules to sequester nuclear neo-substrates out of the nucleus and into the cytosol to enable targeted protein localization.