Non-tuberculous Mycobacteria (NTM) are a group of emerging bacterial pathogens that have been identified in cystic fibrosis (CF) patients with microbial lung infections. The treatment of NTM infection in CF patients is challenging due to the natural resistance of NTM species to many antibiotics. Mycobacterium abscessus (M. abscessus) is one of the most common NTM strains found in the airway of CF patients. In our current study, we characterized the extracellular vesicles (EVs) released by drug-sensitive M. abscessus untreated or treated with clarithromycin, one of the well-known anti-NTM drugs. Our data show that clarithromycin treatment increases mycobacterial protein trafficking into EVs as well as the secretion of EVs in M. abscessus culture. Additionally, EVs released by clarithromycin-treated M. abscessus increase M. abscessus resistance to clarithromycin when compared to EVs from untreated M. abscessus. EV proteomic analysis further indicates that EVs released by clarithromycin-treated M. abscessus carry an increased level of 50S ribosomal subunits, the target of clarithromycin. Taken together, our results suggest that mycobacterial EVs play an important role in increasing M. abscessus resistance to clarithromycin treatment.