Mitochondrial dysfunction is implicated in aging and aging-related disorders, such as neurodegenerative diseases and stroke. To study the effects of progressive mitochondrial dysfunction, a homozygous knock-in mouse expressing a proof-reading deficient version of the nucleus-encoded catalytic subunit of mitochondrial DNA (mtDNA) polymerase (PolgA) has been developed. In the mtDNA mutator mouse the proofreading activity of PolgA has been abolished by a single amino acid change. PolgA is the catalytic subunit of the polymerase gamma, which is involved in replicating and proofreading the mitochondrial DNA. As a result, mtDNA mutator mice develop high levels of point mutations and linear deletions, which lead to several human-like phenotypes associated with aging, including reduced lifespan (42-44 weeks), weight loss, alopecia, anemia, kyphosis, osteoporosis, sarcopenia, loss of subcutaneous fat, and reduced fertility. The complete proteome of liver tissue from mtDNA mutator mice as well as wild type mice is quantified using peptide high-resolution isoelectric focusing (HiRIEF) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) with an isobaric tag (TMT10plex) strategy.