Axonal myelination is essential for neuronal function and health. In peripheral nerves, deficient myelination is responsible for the morbidity of various forms of inherited or acquired neuropathies, including Charcot-Marie-Tooth disease and diabetic neuropathy. Decades of research have uncovered a complex transcriptional and post-transcriptional program that co-ordinates the formation and maintenance of the myelin sheath. In contrast, much less is known about the functional role of post-translational modification (PTM) of proteins in this remarkable biogenic process. Neddylation, a PTM that involves the conjugation of the ubiquitin-like protein Nedd8 to protein targets, has recently emerged as a central and versatile regulator of many cellular processes, including gene transcription, metabolism, and cellular differentiation. In this study, we show that genetic and pharmacological inhibition of neddylation in vivo in developing Schwann cells lead to striking nerve defects that exhibit the classical hallmarks of a severe neuropathy, including gait abnormalities, muscle weakness, and hindlimb clasping, ultimately leading to early death. The mutant mice lack peripheral myelin and develop secondary axonal loss, and we demonstrate, at the mechanistic level, that neddylation regulates multiple critical myelination-related pathways. Together, our findings identify neddylation as a central regulatory hub of control of peripheral myelination and delineate the potential pathogenetic mechanisms in inherited human PNS disorders, characterized by mutations in genes related to the neddylation pathway.