Updated project metadata.
CDK4/6 inhibition is the standard of care for estrogen receptor positive (ER+) breast cancer, although cytostasis is frequently observed, and new treatment strategies that enhance efficacy are required. We performed a genome-wide CRISPR screen to identify genetic determinants of CDK4/6 inhibitors sensitivity. Multiple genes involved in oxidative stress and ferroptosis modulated palbociclib sensitivity. Depletion or inhibition of GPX4 increased sensitivity to palbociclib in ER+ breast cancer models, and sensitised triple negative breast cancer models to palbociclib, with GPX4 null xenografts being highly sensitive to palbociclib. Palbociclib induced oxidative stress and disordered lipid metabolism with lipid peroxidation, leading to a ferroptosis-sensitive state. Lipid peroxidation relied on a peroxisome AGPAT3-dependent pathway in ER+ breast cancer models, rather than the classical ACSL4 pathway. Our data demonstrate that CDK4/6 inhibition creates vulnerability to ferroptosis that could be exploited through combination with GPX4 inhibitors, enhancing sensitivity to CDK4/6 inhibition in breast cancer.