Muscarinic acetylcholine receptor M3 (M3) and its downstream effector Gq/11 are critical drug development targets given their involvement in numerous physiological processes and diseases. Although a cryo-electron microscopy study previously defined the structure of the M3-miniGq complex, the lack of information on the intracellular loop 3 (ICL3) of M3 and α-helical domain (AHD) of Gαq has made it difficult to comprehend the molecular mechanism of M3-Gq coupling fully. Here, we present the molecular mechanism underlying the dynamic interactions between the wild-type full-length M3 and heterotrimeric Gq using hydrogen-deuterium exchange mass spectrometry and NanoLuc Binary Technology-based cell systems. This study suggests potential binding interfaces between M3 and Gq in pre-assembled and fully active nucleotide-free complexes. In addition to well-known binding interfaces, we observed the interaction of long ICL3 with Gβγ. Furthermore, M3 ICL3 negatively affected M3-Gq coupling, and the Gαq AHD underwent unique conformational changes during M3-Gq coupling. Therefore, we propose a comprehensive molecular mechanism of M3-Gq coupling by analyzing previously well-defined binding interfaces and neglected regions, such as M3 ICL3 and the Gαq AHD.