Updated project metadata. The cuticles of arthropods, including aquatic crustaceans like Daphnia, provide an interface between the organism and its environment. Thus, the cuticle’s structure influences how the organism responds to and interacts with its surroundings. Here, we used label-free quantification proteomics to provide a proteome of the molted cuticle of Daphnia magna, which has long been a prominent subject of studies on ecology, evolution, and developmental biology, anddetected 278 high confidence proteins. Using protein sequence domain and functional enrichment analyses, we identified chitin-binding structural proteins and chitin modifying enzymes as most abundant protein groups in the cuticle proteome.Structural cuticular protein families showed a similar distribution to those found in other arthropods and indicated proteins responsible for the soft and flexible structure of the Daphnia cuticle . Finally, cuticle protein genes were clustered as tandem gene arrays in the Daphnia genome, indicating their importance for adaptation to environmental change. The cuticle proteome presented here will be a valuable resource to the Daphnia research community, informing investigations on diverse topics such as the genetic basis of interactions with predators and parasites.