Updated project metadata.
N6-methyladenosine (m6A) methylation of mRNA by the methyltransferase complex (MTC), with core components including METTL3-METTL14 heterodimers and Wilms’ tumor 1-associated protein (WTAP), contributes to breast tumorigenesis, but the mechanism of MTC assembly remains elusive. Here, we identify a novel cleaved form METTL3a (residues 239-580 of METTL3), that is highly expressed in breast cancer. Furthermore, we find that both METTL3a and full-length METTL3 are required for MTC assembly, RNA m6A deposition, as well as cancer cell proliferation. Mechanistically, we find that METTL3a is required for METTL3-METTL3 interaction, which is a prerequisite step for recruitment of WTAP in MTC assembly. Analysis of m6A sequencing data shows that depletion of METTL3a globally disrupts m6A methylation, and METTL3a mediates mTOR activation via m6A-mediated suppression of TMEM127 expression. Consequently, we find that METTL3 cleavage is mediated by proteasome in an mTOR-dependent manner, revealing positive regulatory feedback between METTL3a and mTOR signaling. Our findings reveal METTL3a as an important component for MTC assembly, and suggest the METTL3a-mTOR axis as a potential therapeutic target for breast cancer.