The dorsoventral gradient of BMP signaling plays an essential role in embryonic patterning, with high BMP signal activating ventral-lateral mesoderm markers directly, and low BMP signal inducing neural tissues. The Zinc finger SWIM domain-containing protein 4 (zswim4) is expressed in the dorsal blastopore lip at the onset of Xenopus gastrula and then enriched at the forming neuroectoderm at mid-gastrula stages. Overexpression of zswim4 in Xenopus embryos causes inhibition of the anterior axis and shortened, curved body, and knockdown or knockout of zswim4 disturbed embryonic body axis formation and head development. The expression of ventral-lateral mesoderm marker genes was reduced after zswim4 overexpression and increased in embryos with zswim4 knockdown. Neural marker genes were repressed in zswim4 morphant. Mechanistically Zswim4 attenuates BMP signal through reducing protein stability of Smad1 in both Xenopus embryos and HEK293T cells. Zswim4 interacts with Smad1 and promotes ubiquitination of Smad1 in HEK293T cells. To identify the interaction partner of Zswim4 in regulating Smad1 stability, we performed SILAC based IP in HEK293T cells, and the precipitates were analyzed by Mass Spectrometry.