Analysis of mouse Adamts6 and Adamts10 mutant embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics determination of ADAMTS6-cleaved sites, demonstrates a transcriptionally adapted system for fibrillin-2 proteolysis that contributes to postnatal fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of these defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.