Updated publication reference for PubMed record(s): 35360746.
Background and aims: Cell-cell adhesion structures (desmosomes and, especially, tight junctions) are known to play important roles in control of transepithelial permeability in the colon. The involvement of cell-matrix interactions in permeability control is less clear. The goals of the present study were to: i) determine if disruption of colon epithelial cell interactions with the extracellular matrix alters permeability control and ii) determine if increasing the elaboration of protein components of cell-matrix adhesion complexes improves permeability control and mitigates the effects of cell-matrix disruption. Results: Treatment of colon organoids with Aquamin® increased the expression of multiple basement membrane and hemidesmosomal proteins as well as keratin 8 and 18. TEER values were higher in the presence of Aquamin® than they were under control conditions. Conclusions: These findings provide evidence that cell-matrix interactions contribute to permeability control in the colon. They suggest that the elaboration of proteins important to cell-matrix interactions can be increased in human colon organoids by exposure to a multi-mineral natural product. Increasing the elaboration of such proteins may help to mitigate the consequences of disrupting cell-matrix interactions on permeability control.