Acute myeloid leukemia (AML) patients suffer from chemo-resistance, high relapse frequency, and low overall survival rate, outcomes driven by leukemic stem cells (LSCs). Understanding the molecular mechanisms that support these primitive leukemic cells is crucial for developing effective AML therapeutics. In the present study, we demonstrate that upregulation of the splicing factor RBM17 preferentially marks and sustains the primitive compartment of AML. We performed shotgun proteomics to characterize the proteome changes upon RBM17 knockdown in AMl cells. In addition, we used proteomics to analyze the proteome changes after knockdown of EIF4A2, a direct splicing substrate of RBM17 in AML cells.