The deep-branching protozoan parasite Giardia lamblia is the causative agent of the intestinal disease giardiasis. Consistent with its proposed evolutionary position, many pathways are minimalistic or divergent, including its actin cytoskeleton. Giardia is the only eukaryote known to lack all canonical actin-binding proteins. Previously, our lab identified a number of non-canonical Giardia lamblia actin (GlActin) interactors; however, these proteins appeared to interact only with monomeric or globular actin (G-actin), rather than filamentous actin (F-actin). To identify interactors, we used a chemical crosslinker to preserve native interactions, followed by an anti-GlActin antibody, Protein A affinity chromatography, and liquid chromatography coupled to mass spectrometry. We found 46 putative actin interactors enriched in the conditions favoring F-actin. None of the proteins identified contain known actin-interacting motifs, and many lacked conserved domains. Each potential interactor was then tagged with the fluorescent protein mNeonGreen and visualized in live cells. We categorized the proteins based on their primary localization; localizations included ventral disc, marginal plate, nuclei, flagella, plasma membrane, and internal membranes. One protein from each category was co-localized with GlActin using immunofluorescence microscopy. We also co-immunoprecipitated one protein from each category and confirmed three interactions. Most of the localization patterns are consistent with previously demonstrated GlActin functions, but the ventral disc represents a new category of actin interactor localization. These results suggest a role for GlActin in ventral disc function, which has previously been controversial.