Fertility depends on the progression of complex and coordinated postmating processes within the extracellular luminal environment of the female reproductive tract (FRT). To achieve a more comprehensive level of knowledge regarding female-derived proteins available to interact with the ejaculate, we utilized semiquantitative mass spectrometry-based proteomics to study the composition of the FRT tissue and, separately, the luminal fluid, before and after mating in Drosophila melanogaster. Our approach leveraged whole-fly isotopic labelling to delineate between female proteins and those transferred from males in the ejaculate. The dynamic mating-induced proteomic changes in the extracellular FRT luminal fluid further informs our understanding of secretory mechanisms of the FRT and serves as a foundation for establishing the roles of ejaculate-female interactions in fertility.