Various retinal disorder such as glaucomatous, retinal ischemia reperfusion, and traumatic optic neuropathy, are involved in the pathogenesis of neurodegeneration via glutamate exicitotoxicity. However, the proteomic characteristics and modulation of the neural-microenvironment with NMDA-induced neurodegeneration in retina and optic nerve remain partly understood. We established a protein sketch of NMDA-induced injury by comparing the proteomes of the PBS-operated, NMDA-operated and control groups. We carried out mass spectrometry-based label-free quantitative proteomics to investigate the exicitotoxic neurodegeneration mechanisms and identify key proteins that regulated neural cell death related signaling pathway in retina and optic nerve spatially. Using LC-MS/MS proteomics analysis, in total, we identified 3532 proteins in retina, 2593 proteins in optic nerve. According to Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), the protein changes and energy metabolism in retina and optic nerve tissue were comprehensively evaluated.