Updated project metadata.
The inflammasome initiates innate defense and inflammatory response by activating caspase-1 and pyroptotic cell death in myeloid cells1,2. It is comprised of an innate immune receptor/effector, pro-caspase-1 and a common adaptor molecule, ASC (apoptotic speck-containing protein with a CARD). Consistent with their pro-inflammatory function, inflammasome components including caspase-1, ASC and NLRP3, are known to exacerbate autoimmunity during experimental autoimmune encephalomyelitis (EAE) by enhancing IL-1 and IL-18 secretion in myeloid cells3-6. Here we show an unexpected function of a DNA-binding inflammasome effector, AIM2 (Absent in Melanoma 2)7-10, in restraining autoimmunity by performing EAE in both whole body and Treg-specific deletion of Aim2–/– mice. AIM2 is highly expressed by human and mouse Treg cells and it is essential to attenuate EAE. RNA-seq, biochemical and metabolic analyses revealed that AIM2 attenuates mTOR, Myc and immune-metabolic functions in both Treg cells isolated in vivo and Treg cells induced in vitro with TGF-. Importantly, we found AIM2 physically interacted with RACK1 in Treg cells to facility the PP2A/RACK1/Akt-mTOR signaling, which is identified as a central component downstream of AIM2 that controls Treg cell function and stability. While AIM2 is generally accepted as an inflammasome effector in myeloid cells, this report reveals a previously unappreciated T cell-intrinsic role of AIM2 in maintaining Treg cell function to restrain autoimmunity. This is achieved by diminishing Akt-mTOR signaling to regulate Treg stability under inflammation, and altering immune-metabolism in Treg cells.