Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determined, for the first time, the global lineage-specific lncRNAome of human dermal blood and lymphatic endothelial cells (BECs and LECs), combining RNA-Seq and CAGE-Seq. A subsequent genome-wide antisense oligonucleotide-knockdown profiling of two BEC- and two LEC-specific lncRNAs identified LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA and RNA-protein interaction studies, and phenotype rescue analyses revealed that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes governing the growth and migratory ability of LECs. Together, our study provides new evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.