The Lon protein is a protease implicated in virulence of many pathogenic bacteria, including some plant pathogens. However, little is known about the role of Lon in bacteria from genus Dickeya. This group of bacteria include important potato pathogens, with the most aggressive species, D. solani. To determine the importance of Lon for pathogenicity and response to stress conditions of bacteria, we constructed a D. solani Δlon strain. The mutant bacteria showed increased sensitivity to certain stress conditions, in particular osmotic and high-temperature stresses. Furthermore, qPCR analysis showed an increased expression of the lon gene in D. solani under these conditions. The deletion of the lon gene resulted in decreased motility, lower activity of secreted pectinolytic enzymes and finally delayed onset of blackleg symptoms in the potato plants. In the Δlon cells, the altered levels of several proteins, including virulence factors and proteins associated with virulence, were detected by means of MS-SWATCH analysis. These included components of the type III secretion system and proteins involved in bacterial motility. Our results indicate that Lon protease is important for D. solani to withstand stressful conditions and effectively invade the potato plant.