Updated project metadata.
After the end of the last ice age, ancestrally marine threespine stickleback fish (Gasterosteus aculeatus) have undergone an adaptive radiation into freshwater environments throughout the Northern Hemisphere, creating an excellent model system for studying molecular adaptation and speciation. Stickleback populations are reproductively isolated to varying degrees, despite the fact that they can be crossed in the lab to produce viable offspring. Ecological and behavioral factors have been suggested to underlie incipient stickleback speciation. However, reproductive proteins represent a previously unexplored driver of speciation. As mediators of gamete recognition during fertilization, reproductive proteins both create and maintain species boundaries. Gamete recognition proteins are also frequently found to be rapidly evolving, and their divergence may culminate in reproductive isolation and ultimately speciation. As an initial investigation into the contribution of reproductive proteins to stickleback reproductive isolation, we characterized the egg coat proteome of threespine stickleback eggs. In agreement with other teleosts, we find that stickleback egg coats are comprised of homologs to the zona pellucida (ZP) proteins ZP1 and ZP3. We explore aspects of stickleback ZP protein biology, including glycosylation, disulfide bonding, and sites of synthesis, and find many substantial differences compared to their mammalian homologs. Furthermore, molecular evolutionary analyses indicate that ZP3, but not ZP1, has experienced positive Darwinian selection across teleost fish. Taken together, these changes to stickleback ZP protein architecture suggest that the egg coats of stickleback fish, and perhaps fish more generally, have evolved to fulfill a more protective functional role than their mammalian counterparts.