Porcine reproductive and respiratory syndrome (PRRS), which caused by the porcine reproductive and respiratory syndrome virus (PRRSV), is a serious viral disease affecting global swine industry. At present, PRRSV vaccines fail to prevent this disease. Consequently, new antiviral strategies to compensate for the inefficacy of available vaccines are urgently required. Lysine acetylation is an important post-translational modification (PTM) regulating an array of pathological and physiological conditions. In this study, we profiled the global acetylome using acetylation specific antibody based enrichment and Tandem mass tag (TMT) label LC-MS in PRRSV-infected pulmonary alveolar macrophages (PAMs). As a result, 3731 lysine acetylation sites on 1421 cellular proteins were identified and quantified 6 hours post infection (hpi). Bioinformatics analysis of the differentially acetylated proteins revealed their involvement in various biological processes, including the host immune response and energy metabolism.