In Drosophila melanogaster larval hemolymph, under normal conditions, plasmatocytes and crystal cells represent respectively ~95% and ~5% of hemocytes, while lamellocytes, the third larval cell type, are absent since they are only induced after parasitoid wasp oviposition, their role being the encapsulation-melanization response to eliminate the wasp egg. However, even after induction lamellocytes number remains low, making difficult biochemical studies. Here using the D. melanogaster hopTum-l mutant that constitutively produces a high number of hemocytes, we set up a method to purify lamellocytes and analyzed their major proteins by 2D gel electrophoresis and their biotinylated plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry allowed to identify 430 proteins from the 2D spots and 344 from affinity purified proteins, totalizing 639 unique proteins. Known lamellocyte markers such as PPO3 and the integrin myospheroid are among the major proteins and affinity purification led to the detection of other integrins and a large array of integrins associated proteins involved in cell-cell junction formation and function. Overall newly identified proteins indicated that these cells are highly adapted to the encapsulation process but may have also several different physiological functions. This study provides the basis for new lamellocyte studies in vivo and in vitro, and develop markers to search whether different populations coexist, establish their origins and decipher their respective roles in drosophila physiology and immunity.