The Min biochemical network regulates bacterial cell division and is a prototypical example of self-organizing molecular systems. Cell-free assays relying on purified proteins have shown that MinE and MinD self-organize into surface waves on a planar membrane and into various oscillatory patterns in closed compartments. In the context of developing a synthetic cell from elementary biological modules, harnessing Min oscillations might allow us to drive higher-order cellular functions. However, to convey hereditary information in a synthetic cell, the Min system must be encoded in a genomic DNA that can be copied, transcribed and translated. Here, the MinD and MinE proteins are de novo synthesized from their genes inside liposomes. Dynamic protein patterns and liposome shape deformation accompanying Min protein recruitment to the membrane are observed. By enabling genetic control over Min protein self-organization and membrane remodeling, our methodology offers unique opportunities towards directed evolution of bacterial division processes in vitro.