Russeting of apple fruit is a non-invasive physiological disorder. It occurs mainly in 'Golden Delicious' apple and its hybrids, while understanding of its molecular mechanism is still limited. In this study, we used mRNA sequencing and an isobaric tag for relative and absolute quantitation-based quantitative (iTRAQ) proteomic analysis to detect changes in the expression levels of genes and proteins during russeting formation in russeted and non-russeted skin of 'Golden Delicious' apple. We set up three comparison groups representing the three developmental stages in the russeting formation process. With the formation of fruit russeting, there were 2856 differentially expressed genes and 942 differentially expressed proteins in the comparison groups as detected at the transcript level and protein level, respectively. A correlation analysis of the transcriptome and proteome data revealed related-genes involved in lignin biosynthesis are significant changes at different developmental stages during apple russeting formation. Some other transcription factors, such as MYBs, NACs and LIMs were also involved in apple russeting formation. In this study, one LIM transcription factor was preliminarily determined to be involved in lignin biosynthesis by combining to PAL-box element. Studying the identified genes and proteins will provide further insights into the molecular mechanisms controlling apple russeting formation.