Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most severe congenital heart defect encompassing a spectrum of left-ventricular hypoplasia occurring in association with outflow-tract obstruction. The current clinical paradigm assumes HLHS is largely of hemodynamic origin. Here, by combining whole-exome sequencing of 87 HLHS parent-offspring trios and transcriptome of cardiomycytes (CMs) from healthy and patient native ventricles at different stages of development we identified perturbations in coherent gene programs controlling ventricular muscle lineage development. Single-cell and 3D molecular/functional modeling with iPSCs demonstrated intrinsic defects in the cell-cycle/ciliogenesis/autophagy hub resulting in disrupted differentiation of early cardiac progenitor (CP) lineages and ultimate defective CM-subtype differentiation/maturation in HLHS. Moreover, premature cellcycle exit of ventricular CM prevents tissue response to cues of developmental growth leading to multinucleation/polyploidy, accumulation of DNA damage, exacerbated apoptosis, and eventually ventricle hypoplasia. Our results highlight how genetic heterogeneity in HLHS converges in perturbations of sequential cellular processes driving cardiogenesis and facilitate potential novel nodes for therapy beside surgical intervention.