Updated project metadata. Neuronal development is a multistep process with different regulatory programs that shapes neurons to form dendrites, axons and synapses. To date, knowledge on neuronal development is largely based on murine data and largely restricted to the genomic and transcriptomic level. Advances in stem cell differentiation now enable the study of human neuronal development, and here we provide a mass spectrometry-based quantitative proteomic signature, at high temporal resolution, of human stem cell-derived neurons. To reveal proteomic changes during neuronal development we make use of two different differentiation approaches, leading to glutamatergic induced neurons (iN) or small molecule-derived patterned motor neurons. Our analysis revealed key proteins that show significant expression changes (FDR <0.001) during neuronal differentiation. We overlay our proteomics data with available transcriptomic data during neuronal differentiation and show distinct, datatype-specific, signatures. Overall, we provide a rich resource of information on proteins associated with human neuronal development, and moreover, highlight several signaling pathways involved, such as Wnt and Notch.