Updated project metadata. Left-right asymmetry is a basic character of aging brain; however, the molecular foundation of the left-right asymmetry remains unclear. The morphology, physiology and behavior of rhesus aging are obviously similar to human aging, but the aging-rate of rhesus is roughly three times as fast as human, in which the underlying mechanism needs further investigation. By using of 6-plex tandem mass tag (TMT) labeling, we presented a high throughput quantitative proteomics analysis to 6 group hippocampal samples including left and right hippocampus from 3 years, 6 years and 20 years old rhesus. Our data identified 3391 high-confidence proteins. After screening, we found 340 aging-related proteins of left hippocampus and 334 aging-related proteins of right hippocampus, in which there were 114 overlap proteins. Furthermore, the aging-related proteome of left rhesus hippocampus aging was compared with human aging-related proteome of left hippocampus that was reported by our lab previously. As the results show, we discovered 446 aging-related proteins in rhesus and 830 aging-related proteins in human with an overlap of 106 proteins.