Updated project metadata. The ability of cancer cells to switch phenotype in response to a dynamic intra-tumor microenvironment is a major barrier to effective therapy. In melanoma, down-regulation of the lineage addiction oncogene MITF (Microphthalmia-associated transcription factor) is a hallmark of the proliferative-to-invasive phenotype switch. Yet how MITF promotes proliferation and suppresses invasion is poorly understood. Here we show that expression of the key lipogenic enzyme stearoyl-CoA desaturase (SCD) is activated by MITF, but suppressed by the stress-responsive transcription factor ATF4. SCD expression is required for MITF-positive melanoma cell proliferation,. By contrast, MITF-low cells express reduced levels of SCD and are insensitive to its inhibition, indicating that cell phenotype dictates response to drugs targeting lipid metabolism. Since SCD suppresses inflammatory signalling and ATF4 expression, the results identify a positive feedback-loop that can maintain an invasive phenotype, uncover a key role for MITF and ATF4 in metabolic reprograming, and reveal fatty acid composition as a driver of melanoma phenotype-switching.