Updated project metadata.
Glaciers are populated by a large number of microorganisms including bacteria, archaea and microeukaryotes. From an ecological point of view, three ecosystems can be differentiated in glaciers: the supraglacial ecosystem, the subglacial ecosystem and the englacial ecosystem. Several factors such as solar radiation, nutrient availability and water content greatly determine the diversity and abundance of microbial populations, the type of metabolism and the biogeochemical cycles. Firstly, the supraglacial ecosystem, sunlit and oxygenated, is predominantly populated by autotrophic microorganisms. Secondly, the subglacial ecosystem contains a majority of chemoautrotophs that are fed on the mineral salts of the rocks and basal soil. Lastly, the englacial ecosystem is the less studied and the one that contains the smallest number of microorganisms. However, these unknown englacial microorganisms establish a true trophic chain and appear to have an active metabolism. In order to study their metabolic potentials, samples of englacial ice were taken from an Antarctic glacier. The cells were harvested and their proteins were extracted and analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI/TOF/TOF). Several proteins and enzymes were found that demonstrate the existence of cellular activity at subzero temperatures. In this way it is shown that the englacial microorganisms are not quiescent, but that they maintain an active metabolism and play an important role in the glacial microbial community.