Updated publication reference for PubMed record(s): 29892068.
The microtubule (MT) cytoskeleton can provide a mechanical resistance that can impede the motion of contracting cardiomyocytes. Yet a role of the MT network in human heart failure is unexplored. Here we utilize mass spectrometry to characterize changes to the cytoskeleton in human heart failure. Proteomic analysis of left ventricle tissue reveals a consistent upregulation and stabilization of intermediate filaments and MTs in human heart failure. This dataset includes left ventricular (LV) myocardium from 34 human hearts – either non-failing (NF) or failing hearts. NF hearts are subdivided into normal or compensated hypertrophy (cHyp), while failing hearts are subdivided into ischemic cardiomyopathy (ICM), dilated cardiomyopathy (DCM), and hypertrophic cardiomyopathy with preserved or reduced ejection fraction (HCMpEF and HCMrEF, respectively). Further details on patient classification and in vivo parameters on each heart are listed in sample details.txt.