Updated project metadata.
Glucocorticoids are widely used to treat inflammatory disorders. Prolonged use results in side effects including osteoporosis, diabetes and obesity. The selective glucocorticoid receptor (GR) modulator Compound A (CpdA) exhibits an inflammation-suppressive effect, largely in absence of detrimental side effects. To understand the mechanistic differences between the classic glucocorticoid dexamethasone (DEX) and CpdA, we looked for proteins oppositely regulated using an unbiased proteomics approach. We found that the autophagy receptor p62 but not GR mediates the anti-inflammatory action of CpdA in macrophages. CpdA drives the upregulation of p62 by recruiting the NRF2 transcription factor to its promoter. Contrarily, the classic GR ligand dexamethasone recruits GR to p62 and other NRF2 controlled gene promoters, resulting in gene downregulation. Both DEX and CpdA are able to induce autophagy, albeit in a cell-type and time-dependent manner. Suppression of LPS-induced IL-6 and MCP1 genes in bone marrow-derived macrophages by CpdA is hampered upon p62 silencing, confirming that p62 is essential for the anti-inflammatory capacity of CpdA. Together, these results demonstrate how off-target mechanisms of selective GR ligands may establish a more efficient anti-inflammatory therapy