Although many affinity adsorbents have been developed for phosphopeptides enrichment, high-specifically capturing the multi-phosphopeptides is still a big challenge. Here, we investigated the mechanism of phosphate ions coordination and substitution on affinity adsorbents surfaces and modulated the selectivity of affinity adsorbents to multi-phosphopeptides based on the different capability of mono- and multi-phosphopeptides in competitively substituting the pre-coordinated phosphate ions at strong acidic condition. We demonstrated both the species of pre-coordinated phosphate ions and the substituting conditions played crucial roles in modulating the enrichment selectivity to multi-phosphopeptides, and the pre-coordinated affinity materials with relative more surfaces positive charges exhibited better enrichment efficiency due to the cooperative effect of electrostatic interaction and competitive substitution. Finally, an enrichment selectivity of 85% to multi-phosphopeptides was feasibly achieved with 66% improvement in identification numbers for complex protein sample extracted from HepG2 cells.