Mechanical stress is a potent regulator of cell growth, contractility and gene regulation. Abnormal uterine distension during pregnancy increases the risk of preterm birth and likely activates crosstalk between multiple signaling networks with protein phosphorylation playing a critical role. Telomerized human uterine smooth muscle cells were exposed to 18% biaxial stretch for 5 min and the phosphoproteome was probed by mass spectrometry. We observed specific phospho-activation of mitogen activated protein kinase at threonine 183 and tyrosine 185, myosin regulatory light chain 9 at threonine 19, and heat shock protein 27 at serine 82. Our analysis revealed protein phosphorylation changes in signaling pathways related to actin cytoskeleton remodeling, activation of the focal adhesion kinase pathway, smooth muscle contraction and mechanistic target of rapamycin activation. These data point to potential mechanistic links between stretch-induced phosphorylation and development of the contractile phenotype in myometrial cells.