The objectives of this study encompassed a thorough exploration of the potential implications of protein profiling in hairy roots, specifically focusing on optimizing and enhancing C. asiatica organ cell biofactories. In this pursuit, we categorized established C. asiatica hairy root lines according to their capacity for centelloside production, classifying them into HIGH, MID, or LOW categories. For comparative analysis, wild adventitious (Adv) roots were extracted from in vitro C. asiatica seedlings and cultivated in solid MS medium at 25°C in complete darkness, serving as control specimens. This meticulous, label-free proteomic analysis enabled the successful identification of several proteins. Our research substantially builds upon and extends the findings presented by Alcalde et al. (2022) (DOI: 10.3389/fpls.2022.1001023). In their study, distinctive morphological and metabolic variations were noted among different C. asiatica hairy root lines. Such differences are presumably attributable to the random incorporation of a selective set of genes from the T-DNA, with particular emphasis on the rol and aux genes.