Parental histone recycling is essential for the restoration of chromatin-based epigenetic information during chromatin replication; however, the specific mechanisms underlying the local recycling of parental histones remain poorly understood. Here, we reveal an unexpected role of the Spt16-N domain in histone chaperone FACT during parental histone recycling and transfer in budding yeast. We found that depletion of Spt16 or mutations in the Spt16 middle domain leads to defects in both parental histone recycling and new histone deposition, affecting both the leading and lagging strands of DNA replication forks, highlighting the essential role of the FACT complex in both parental histone recycling and new histone deposition. Surprisingly, Spt16-N deletion results in an apparent defect in parental histone recycling, with a more pronounced defect on the lagging strand than the corresponding leading strand. Mechanistically, the Spt16-N domain acts as a protective barrier, shielding FACT-bound histone H3-H4 and facilitating its interaction with Mcm2, which ensures efficient local parental histone recycling. Collectively, the Spt16-N domain provides a protein–protein interaction module allowing FACT to act as a shuttle chaperone, cooperate with multiple replisome components, which act as co-chaperones, to form a complex involving the shuttle chaperone, histones, and co-chaperones, during parental histone recycling and transfer.