Due to the rising incidence of antibiotic resistant infections, last-line antibiotics polymyxins have resurged in the clinics together with the appearance of new bacterial strategies of escape. The Gram-negative opportunistic pathogen Pseudomonas aeruginosa develops resistance to colistin/polymyxin by distinct molecular mechanisms, mostly involving the modification of the lipid A component of the LPS by proteins encoded within the arnBCDATEF-ugD (called arn) operon. We characterized a polymyxin-induced operon, named mipBA, present in P. aeruginosa group of strains devoid of the arn operon. Mass spectrometry-based quantitative proteomics showed that the absence of MipBA modifies the membrane proteome, notably impacting ParRS-regulated proteins, in response to polymyxin.