High-grade serous (HGS) ovarian cancer is the most common and aggressive ovarian cancer type, and the most lethal gynaecological disease 1,2. The major cause is its highly metastatic nature and the limited availability of effective therapies to oppose it. The omentum is a highly vascularised visceral depot of adipose tissue with immune functions, which becomes the preferential metastatic site in patients with HGS ovarian cancer 1,2. The omentum provides an environment that supports the rapid growth of metastatic tumours and their spread within the peritoneal cavity and adjacent organs 2,3. Research aimed at understanding the biology of metastatic tumours in the omentum is therefore essential to find strategies to oppose HGS ovarian cancer. To this aim, there is the need for in vitro models that faithfully recapitulate the microenvironment of HGS omental metastasis in patients.