Updated project metadata. Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and promote a hormonal imbalance that leads to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction and optimization of plant growth-promoting response. The work aims to understand the underlined mechanisms responsible for the early stimulatory growth effects of the H. seropedicae inoculation in maize. To perform it, we combined transcriptomic and proteomic approaches with physiological analysis. The results obtained with the inoculation showed increased root biomass (233 and 253%) and shoot biomass (249 and 264%), respectively, for the fresh and dry mass of maize seedlings and increased green content and development. Omics data analysis for the positive biostimulation phenotype revealed that inoculation increases N-uptake and N-assimilation machinery through differential expressed nitrate transporters and amino acids pathway, as well carbon/nitrogen metabolism integration by the tricarboxylic acid cycle and the polyamines pathway. Additionally, phytohormone levels of root and shoot tissues increased in bacterium-inoculated-maize plants leading to feedback regulation by the ubiquitin-proteasome system. The early biostimulatory effect of H. seropedicae partially results from hormonal imbalance coupled with efficient nutrient uptake-assimilation and a boost in primary anabolic metabolism of carbon-nitrogen integrative pathways.