we describe a general approach for de novo design of proteins made out of repeating units that bind peptides with repeating sequences such that there is a one to one correspondence between repeat units on the protein and peptide. We develop a rapid docking plus geometric hashing method to identify protein backbones and protein-peptide rigid body arrangements that are compatible with bidentate hydrogen bonds between side chains on the protein and the backbone of the peptide; the remainder of the protein sequence is then designed using Rosetta to incorporate additional interactions with the peptide and drive folding to the desired structure. We use this approach to design, from scratch, alpha helical repeat proteins that bind six different tripeptide repeat sequences--PLP, LRP, PEW, IYP, PRM and PKW-- in near polyproline 2 helical conformations.