Updated project metadata. Bacterial lung infections are associated with strong infiltration of CD11b+ myeloid cells, which limit life-threatening disease, but also severely damage lung tissue. In a murine lung infection model with Streptococcus pneumoniae, we found intrinsic upregulation of CD11b on resident alveolar macrophages. Such CD11b expression was associated with transcriptomic and proteomic adaptations by alveolar macrophages, leading to the identification of specific molecules and pathways that depended on CD11b. In the absence of CD11b, the antimicrobial defense of alveolar macrophages was strongly reduced, and the production of neutrophil-recruiting chemokines was more pronounced. Moreover, CD11b expression limited the infection and prevented excessive alveolar damage. In conclusion, our study provides detailed molecular insights into the alveolar macrophage-specific immune response to Streptococcus pneumoniae lung infection and reveals profound CD11b-dependent alterations that are critical for effective antimicrobial immunity, neutrophil recruitment, and prevention of alveolar damage.