Updated project metadata. Prey-specialised spiders are adapted to capture specific prey items, including dangerous prey such as ants, termites or other spiders. It has been observed that the venoms of specialists are often prey-specific and less complex than those of generalists, but venom composition has not been studied in detail in prey-specialised spiders. Here, we investigated the venom of the prey-specialised white-tailed spider (Lamponidae: Lampona sp.), which utilises specialised morphological and behavioural adaptations to capture spider prey. We hypothesised Lampona spiders also possess venomic adaptations, specifically, its venom is more effective to focal spider prey due to the presence of prey-specific toxins. We analysed the venom composition using proteo-transcriptomics and taxon-specific toxicity using venom bioassays. Our analysis identified 208 putative toxin sequences, comprising 103 peptides <10 kDa and 105 proteins >10 kDa. Most peptides belonged to one of two families characterised by scaffolds containing eight or ten cysteine residues. Protein toxins showed similarity to galectins, leucine-rich repeat proteins, trypsins and neprilysins. The venom of Lampona was shown to be spider-specific, as it was more potent against the preferred spider prey than against alternative prey represented by a cricket. In contrast, the venom of a related generalist (Gnaphosidae: Gnaphosa sp.) was similarly potent against both prey types. Prey-specific Lampona toxins were found to form part of the protein (>10 kDa) fraction of the venom. These data provide insights into the molecular adaptations of venoms produced by prey-specialised spiders.